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Abstract Mass loss from the Greenland ice sheet (GrIS) has increased over the last two decades in
response to changes in global climate, motivating the scientific community to question how the GrIS
will contribute to sea-level rise on timescales that are relevant to coastal communities. Observations also
indicate that the impact of a melting GrIS extends beyond sea-level rise, including changes to ocean
properties and circulation, nutrient and sediment cycling, and ecosystem function. Unfortunately, despite
the rapid growth of interest in GrIS mass loss and its impacts, we still lack the ability to confidently predict
the rate of future mass loss and the full impacts of this mass loss on the globe. Uncertainty in GrIS mass
loss projections in part stems from the nonlinear response of the ice sheet to climate forcing, with many
processes at play that influence how mass is lost. This is particularly true for outlet glaciers in Greenland
that terminate in the ocean because their flow is strongly controlled by multiple processes that alter their
boundary conditions at the ice-atmosphere, ice-ocean, and ice-bed interfaces. Many of these processes
change on a range of overlapping timescales and are challenging to observe, making them difficult to
understand and thus missing in prognostic ice sheet/climate models. For example, recent (beginning in the
late 1990s) mass loss via outlet glaciers has been attributed primarily to changing ice-ocean interactions,
driven by both oceanic and atmospheric warming, but the exact mechanisms controlling the onset of
glacier retreat and the processes that regulate the amount of retreat remain uncertain. Here we review the
progress in understanding GrIS outlet glacier sensitivity to climate change, how mass loss has changed
over time, and how our understanding has evolved as observational capacity expanded. Although many
processes are far better understood than they were even a decade ago, fundamental gaps in our
understanding of certain processes remain. These gaps impede our ability to understand past changes in
dynamics and to make more accurate mass loss projections under future climate change. As such, there is
a pressing need for (1) improved, long-term observations at the ice-ocean and ice-bed boundaries, (2) more
observationally constrained numerical ice flow models that are coupled to atmosphere and ocean models,
and (3) continued development of a collaborative and interdisciplinary scientific community.
Plain Language Summary Increasing mass loss from the Greenland ice sheet (GrIS) in
response to changes in global climate has motivated the scientific community to understand how much sea
level rise will happen in the coming decades. Observations now indicate that the impact of a melting GrIS
are more widespread than just sea-level rise and include changes to ocean properties and circulation,
nutrient and sediment cycling, and ecosystem function. Major uncertainties still hamper accurate
predictions of these impacts, particularly for outlet glaciers in Greenland that terminate in the ocean
because their flow is strongly controlled by multiple processes that alter their boundary conditions
at the ice-atmosphere, ice-ocean, and ice-bed interfaces. Many of these processes change on a range
of overlapping timescales and are challenging to observe. Here we review the scientific progress in
understanding how GrIS outlet glaciers respond to climate and how our understanding has changed over
time as observations have increased. We conclude with recommendations for (1) improved, long-term
observations at the ice-ocean and ice-bed boundaries, (2) more observationally-constrained ice flow
models that are linked to atmosphere and ocean models, and (3) continued development of a collaborative
and interdisciplinary scientific community.
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1. The Importance of Greenland's Outlet Glaciers to Society
The Greenland ice sheet (GrIS) is the second largest reservoir of land-based ice in the world with ∼ 2 ×
106 km3 of ice and the ability to increase global sea level by 7.42 m (Morlighem et al., 2017). The total ice sheet
mass balance is an important measure of its “health” with two interconnected components contributing to
mass balance changes: (1) solid ice discharge (through iceberg calving) via dynamic changes that occur as
a result of atmospheric, oceanic, and other processes and (2) ice surface mass balance (SMB) changes in
response to changing atmospheric conditions (see Glossary). While surface accumulation within the interior
areas of the GrIS has increased slightly in recent years (Noël et al., 2018), large mass loss is concentrated
around the periphery of the GrIS. This mass loss includes both large surface mass losses and changes to
marine-terminating outlet glaciers, which act as rapid mass conveyor belts moving ice from the interior to
the ocean.

Recent observations suggest that during 1972–2018, ∼ 66% of the GrIS mass loss was due to dynamic change
associated with marine-terminating outlet glaciers, producing a ∼9-mm increase in sea level, with pro-
nounced dynamic losses in NW and SE Greenland and roughly half of this sea level increase occurring in the
last 8 years (Mouginot et al., 2019). While estimates of past mass contribution to sea level have low uncer-
tainties, multiple difficulties remain in projecting future GrIS mass change. In part, there is large uncertainty
because future human behavior and climate policy is unknown. There also remains a debate about the
physics that dominate important processes contributing to dynamic changes, particularly for outlet glaciers
that connect to the ocean (Minchew et al., 2019; Pattyn, 2018; Stearns & van der Veen, 2018; Stearns &
van der Veen, 2019; Sutherland et al., 2019). In addition, while most of the outlet glacier dynamic response
occurs in the terminal zone (at the ocean boundary), contemporary terminus change is proven long-lasting,
ultimately affecting the full ice sheet, and is responsible for much of the expected sea-level rise from Green-
land (Felikson et al., 2017; Howat et al., 2008; Price et al., 2011). Thus, it is important to understand more
than what happens at the ice sheet marine margin alone.

Here we present an overview of the Greenland marine-terminating outlet glacier settings and controls,
examined through the lens of observational and modeling capacity growth in recent decades and a view of
future needs. This review builds on existing reviews of glacier calving and crevasse mechanisms (Benn et al.,
2007; Colgan et al., 2016), submarine melt (Benn et al., 2017; Straneo & Cenedese, 2015; Truffer & Motyka,
2016), and numerous studies that examine the Greenland climate forcing (Fyke et al., 2018; Straneo & Heim-
bach, 2013) and the heterogeneous outlet glacier response (Carr et al., 2013). The study of Greenland outlet
glaciers is especially urgent given that the recent rapid climate warming underway in the Arctic (see section
3) and concurrent rapid changes in GrIS mass loss (Mouginot et al., 2019) portend a strong response in GrIS
mass change.

Rapid expansion of observational capabilities, both in-situ and via satellites, has improved our understand-
ing of outlet glacier changes (see section 4) and the processes responsible (see section 5). Recent attention
has focused on ocean forcing, but the response of outlet glaciers to climate forcing is not straightforward.
A complex picture has emerged, with interwoven processes controlling outlet glacier dynamics and with
outlet glaciers playing a multidimensional role in the interconnected Arctic ice-ocean-climate-biological
system (section 6). Given that Greenland's outlet glaciers are important at all scales—locally (e.g., biological
productivity and nutrient cycling), regionally (e.g., fjord circulation and ocean stratification), and globally
(e.g., ocean thermohaline circulation and sea-level rise)—we conclude with recommendations for future
research (see section 7) to expand our understanding of outlet glacier change and associated effects.

2. Context and Setting
2.1. Greenlandic Marine-Terminating Outlet Glacier Characteristics
Outlet glaciers act as arteries for ice flux from the ice sheet interior; their topographically controlled high
rates of ice flow allow them to drain interior ice to the marine margin where they terminate in the ocean.
Across the globe, the character of marine-terminating outlet glaciers spans a range from the wide and deep,
ice-shelf-buttressed outlet glaciers of Antarctica to the thin, well-grounded and relatively warm glaciers of
Svalbard, Alaska, and other Arctic regions. Greenland's glaciers fill a unique central range on this spectrum,
with many narrow, deeply grounded outlet glaciers and examples both of ice-shelf-buttressed outlets (in the
north) and thin, well-grounded glaciers (e.g., much of the east). Most GrIS outlet glaciers have bedrock mar-
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Figure 1. The Greenland Ice Sheet situated in the Arctic showing ocean currents. The size of ocean current arrows
indicates water mass; color of arrows indicates heat transport. Surface ice flow speed from (Joughin et al., 2010)
highlights the numerous fast-moving outlet glaciers around the periphery of the ice sheet that drain ice from the
interior. Purple triangles indicate outlet glaciers identified with flow rates above 50 m/year. Bathymetry data from the
GEBCO Grid (GEBCO Compilation Group, 2019) show the deep troughs created on the sea floor from the extent of
past ice streams to the continental slope.

gins and deep central troughs carved through erosion, similar to their marine-terminating mountain-glacier
counterparts in Alaska and the Antarctic Peninsula. However, some outlet glaciers in Greenland have fast
surface flow speeds that reach far into the ice sheet interior (e.g., Jakobshavn Isbrae and the Northeast Green-
land Ice Stream) with similarities to the large ice streams draining the Antarctic ice sheet. For these glaciers,
lateral boundaries of fast flow are constrained by slow-moving ice in the interior and bedrock towards the
ice sheet margin. Greenland's outlet glaciers are narrower than their Antarctic counterparts, but compared
to outlet glaciers in the rest of the Arctic, many GrIS outlet glaciers are deeper and connected to a much
larger supply of inland ice.

While increasing air and ocean temperatures are driving higher mass loss from outlet glaciers around the
globe, the unique character of climate forcing in different regions alters outlet glacier dynamic response. In
the Antarctic Peninsula, solid ice discharge via calving is the dominant outlet glacier ice loss process, likely
exacerbated by ice shelf weakening from surface and submarine melt (Glasser & Scambos, 2008; Khazendar
et al., 2007; Scambos et al., 2004, 2009). Other regions around Antarctica (like the Amundsen Embayment)
show large concentrations of dynamic mass loss associated with warm subsurface ocean temperatures sug-
gesting that, like Greenland, the ocean exerts a strong influence on Antarctic mass loss (Cook et al., 2016;
The IMBIE team, 2018). Outside of the GrIS, widespread retreat and dynamic acceleration is evident across
the Arctic, though SMB is a more dominant contributor to mass loss than dynamics. Changes in discharge
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only account for ∼20% of mass loss outside the GrIS (McNabb et al., 2015; Van Wychen et al., 2016). While
the ocean likely plays an important role for some glaciers outside the GrIS, most of these systems are more
responsive to atmospheric changes because they are well-grounded or have shallow regions of ocean contact
(Cook et al., 2019).

The GrIS contains ∼280 fast-flowing (>100 m/year) marine-terminating glaciers (Figure 1) with a high
degree of heterogeneity across a range of parameters (Mankoff et al., 2019). Ice discharge from these glaciers
is ∼500 Gt/year total, with large variations in individual glacier ice discharge associated with interglacier
differences in width (1–30 km), thickness (∼100–2,000 m), terminus basal conditions (grounded, partially
floating, fully floating), terminus conditions (open water, mélange—a granular matrix of icebergs, bergy
bits, and sea ice—or ice shelf presence), basal substrate (bedrock, sediments, water), and other topographic
controls (Enderlin et al., 2014; King et al., 2018; Mankoff et al., 2019). In the far north and northeast, there
are relatively few outlet glaciers; most of which terminate in perennial floating ice shelves. In the north-
west, ice flow is less restricted by topography further inland, and there exists a larger abundance of narrower
outlet glaciers draining the ice sheet. Here many glaciers develop ephemeral floating termini each winter,
which are lost when calving rates increase each spring. Southeastern and western outlet glaciers typically
lack floating ice shelves and are fully grounded at their termini, with the exception of the largest glaciers
(Enderlin & Howat, 2013; James et al., 2014).

3. Climate Setting in Greenland
The last several decades have seen substantial changes in atmospheric and oceanic conditions around
Greenland (Bevis et al., 2019; Straneo & Heimbach, 2013). Large-scale and multidecadal processes as well
as local and short-term changes in natural and anthropogenic forcings influence outlet glaciers. Recent
rapid Greenland mass loss cannot, however, be explained by natural variability alone. Current changes are
closely aligned with significant acceleration in anthropogenic warming, which is altering small to large-scale
processes critical to ice sheet mass balance (Aschwanden et al., 2019).

Large-scale atmospheric variations influence surface mass balance across the full ice sheet. Annual to multi-
decadal GrIS SMB correlates, at varying significance, with the North Atlantic oscillation (NAO), Greenland
blocking index (GBI), and Atlantic multidecadal oscillation (AMO) (Hanna et al., 2012, 2016). A negative
summer NAO phase is associated with high annual mass losses via enhanced summertime warming and
reduced snowfall, particularly in western Greenland (Bevis et al., 2019). High values of the GBI, which mea-
sure and describe mean 500 hPa geopotential height for the 60–80◦ N, 20–80◦ W region, are also associated
with large, ice-sheet-wide melt events (Delhasse et al., 2018; Hanna et al., 2013; Hofer et al., 2017). The
decadal-scale periodicity of the NAO and GBI, and the approximately 60-year periodicity of the AMO, are
evident in multicentury Greenland ice cores (Trusel et al., 2018). The summer NAO and annual surface mass
balance have been predominantly negative since the early 2000s (van den Broeke & Lenaerts, 2014), punc-
tuated by a strong positive index and a pause in surface mass loss in 2013 (Bevis et al., 2019). Although the
summer GBI was generally slightly negative from the 1960s–1980s, it increased throughout the 1990s–2000s,
reaching a peak during the extreme melt season in 2012 (Hanna et al., 2016). Since the late 1990s, the AMO
has been in a positive phase that has been amplified by global warming and currently exceeds AMO values
during the period of Greenland warming in the 1930s and 1940s (Enfield et al., 2001).

Along with approximately decadal-scale atmospheric forcing, shorter-term variations are also impor-
tant. For example, commonly occurring low-level clouds can enhance downwelling infrared flux without
obstructing solar radiation, inducing short-term melt events (Bennartz et al., 2013). Atmospheric rivers,
which can transport warm, moist air from North America can also enhance short-term melt events, par-
ticularly in western Greenland (Mattingly et al., 2018). Short-term variations may also be affected by the
broad-scale atmospheric state. For example, the occurrence of atmospheric rivers over Greenland has
increased since the late 1990s, in part connected to the negative NAO phase (Mattingly et al., 2018).

On the oceanic side, GrIS outlet glaciers are influenced by ocean properties (e.g., temperature, salinity, and
velocity) at the ice-ocean interface, and these ocean properties are in turn modulated by regional ocean cir-
culation around Greenland. (Details of the oceanographic controls on Greenland's outlet glaciers are covered
in the review papers of Straneo and Heimbach (2013) and Straneo and Cenedese (2015).) Greenland lies at
the confluence of the export pathway of waters from the Arctic and the recirculation of subtropical Atlantic
Waters (AW). The East Greenland Coastal Current carries cold, fresh polar-origin water (PW) southward
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along the east coast and meets the Irminger Current south of Denmark Strait (Figure 1). As an extension
of the North Atlantic Current, the Irminger Current forms a key subpolar gyre boundary current and car-
ries warm AW toward Greenland. Together, the merged East Greenland-Irminger Current travels along the
southeast coast, wraps around the southern end of Greenland at Cape Farewell, and continues northward
as the West Greenland Current towards Baffin Bay.

Transported via this system of currents, AW is an important source of heat for outlet glaciers. On the Green-
land continental shelves, the colder PW is generally found in the surface layer (upper ∼200 m) and near
the coast, blocking AW surface pathways towards glaciers. However, AW is typically found below and off-
shore of PW on the shelf (Sutherland & Pickart, 2008) and fills the deep basins within most Greenlandic
fjords (Straneo et al., 2011, 2012). The relative offshore thickness of PW and AW layers can modulate water
mass access to outlet glaciers, influencing ice-ocean interface melting. For example, in the mid-1990s, the
AW layer thickened offshore of Greenland (Våge et al., 2011), possibly in response to combined upper ocean
warming since the 1950s (Levitus & Antonov, 2005) and decadal-scale natural ocean variability (Straneo &
Heimbach, 2013). This AW layer thickening might have increased the ocean heat available at glacier ter-
mini and enhanced submarine melting, as suggested by a correlation between large-scale ocean properties
and glacier behavior (Holland et al., 2008; Straneo & Heimbach, 2013). However, there are many critical but
poorly resolved links between large-scale ocean variability and glacier response, including fjord circulation
and submarine melt dynamics.

To influence submarine melting at glacier termini, Atlantic-origin waters must cross the continental shelf,
transit through fjords, and come into contact with glacier termini. Bathymetry is one important control on
ocean heat transport towards glacier termini. On the continental shelf, deep valleys or troughs—carved by
the past expansion of glaciers during the Last Glacial Maximum (O’Cofaigh et al., 2013)— form a pathway for
warm AW to cross the shelf and reach the fjord mouth. Fjords, in turn, form deep, narrow conduits between
the ocean at the shelf and the glacier termini. Some fjords contain bathymetric sills (most commonly at the
mouth) that can limit the encroachment of warm waters at depth, likely making glaciers within those fjords
less vulnerable to ocean warming (Carroll et al., 2016; Millan et al., 2018).

Other fjord circulation processes—including freshwater buoyancy forcing, atmospheric forcing, tides, and
coastal-trapped waves—also control ocean heat transport towards the glacier and glacial freshwater export
out to the coastal ocean. During the summer, subglacial meltwater discharges at the outlet glacier grounding
line, driving vigorous upwelling plumes and setting up a fjord exchange flow that helps draws AW toward
glacier termini (Carroll et al., 2015; Motyka et al., 2003; Rignot et al., 2010; Sciascia et al., 2013). Other
freshwater sources, including surface runoff and submarine glacier and iceberg melting, also contribute
to the buoyancy forcing that drives a fjord exchange flow. In addition, wind forcing—both locally within
the fjord and remotely on the shelf—can drive energetic fjord flows and vigorous exchange between fjords
and shelf ocean (Carroll et al., 2017; Cowton et al., 2016; Fraser & Inall, 2018; Jackson et al., 2014, 2018;
Spall et al., 2017). These wind events, often associated with atmospheric low pressure systems, are strongest
during winter and have a seasonal cycle that is opposite to the seasonality of freshwater forcing (Harden
et al., 2011; Oltmanns et al., 2014). Freshwater forcing, wind forcing, and other fjord processes (tides, internal
waves, etc.) all contribute to the net exchange of heat, salt, and freshwater between the shelf and the fjord
and in combination control the near-glacier ocean properties that influence the GrIS.

4. Evolving Understanding of GrIS Outlet Glaciers
Despite nearly a century of ice sheet observations (Bjørk et al., 2012; Gabel-Jorgensen, 1935), only in recent
decades has the importance of GrIS outlet glaciers been fully recognized. This is largely due to the improved
spatial and temporal resolution of observations from air and space-borne instruments, particularly since
the 1990s (Figure 2). These observational improvements have been proven pivotal for quantifying the mass
balance state of the ice sheet and for improving our understanding of outlet glacier controls. As an example,
the ice sheet was thought to be close to a balanced state during the 1970s and 1980s but, until recently, we
lacked the observational data to demonstrate this within measurement uncertainties (Mouginot et al., 2019).

In the 1990s, NASA's Program for Arctic Regional Climate Assessment was the seed for several observa-
tional ground and air campaigns aimed at improving ice sheet mass balance estimates. NASA's Airborne
Topographic Mapper began flying over Greenland with regularity during this time and revealed peripheral
thinning rates in excess of 1 m/year (Frederick et al., 2000; Krabill et al., 2004), which were subsequently
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Figure 2. Qualitative interpretation of progress in the field of outlet glaciers in Greenland showing rapid gains in observations (both sensor type and scales
have expanded), understanding of important mechanisms, and model capabilities with time.

validated by NASA's ICESat mission launched in 2003 (Pritchard et al., 2009). Although the relative contri-
butions of the observed thinning from ice dynamics or surface mass balance changes were unknown at that
time, more recent reconstructions of terminus position (Catania et al., 2018; Howat & Eddy, 2011; Murray
et al., 2015) and discharge (Mouginot et al., 2019; Rignot & Kanagaratnam, 2006) support the hypothesis
that the onset of dynamic flow acceleration occurred in the 1990s. These changes coincided with increases
in atmospheric warmth and oceanic heat content as described above.

Subsequently, direct monthly GrIS mass estimates became available from NASA's Gravity Recovery and Cli-
mate Experiment (GRACE) satellite launched in 2002, producing, for the first time, an ice-sheet-wide picture
of the spatio-temporal mass balance pattern. As GRACE data accumulated, complex and time-varying mass
loss patterns were revealed. Mass loss was concentrated in the southeast prior to ∼2007, but notable accel-
eration of mass loss into the northwest ultimately allowed the northwest to contribute ∼70% of GrIS mass
loss during 2003-2013 (Chen et al., 2011; Khan et al., 2010; Velicogna et al., 2014). GRACE data also enabled
scientists to fully appreciate the rapidity of GrIS changes. Even seasonal and shorter duration events had
an impact on ice mass balance (Velicogna, 2009), meaning that short duration observations could impart
bias in mass balance estimates. By comparing regional climate model estimates of ice sheet SMB to the total
mass loss data from GRACE, scientists were able to distinguish between SMB and dynamic mass change
for the ice sheet on a range of time and space scales (van den Broeke et al., 2016; Velicogna et al., 2014).
This work thrust Greenland's outlet glaciers into the spotlight (in terms of both the research priority and the
news media) as significant potential contributors to sea level rise.

With a focus on outlet glaciers as an important control of GrIS mass balance, researchers began to identify
and understand the underlying mechanisms for the observed changes. While changes to dynamic regime
(e.g., stable to retreating) were likely initiated from the ocean (Howat & Eddy, 2011; Murray et al., 2010;
Nick et al., 2009; Seale et al., 2011; Straneo et al., 2010), the exact mechanism for ocean-induced retreat
remained elusive for several years. For many outlet glaciers, speedup and thinning were hallmark indicators
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of dynamic change, demonstrating the sensitivity of outlet glacier dynamics to changes in terminus pertur-
bations (Howat et al., 2008; Joughin et al., 2008). As observations expanded in time and space, however,
this simple model of glacier dynamic response to climate perturbation became more complicated. Not all
glaciers responded to climate perturbations in the same way, and even glaciers in adjacent fjords exhibited
vastly different dynamic changes in elevation (Csatho et al., 2014; Felikson et al., 2017; Howat et al., 2007;
McFadden et al., 2011), ice speed (Bevan et al., 2012; Howat et al., 2007; Joughin et al., 2010; Moon et al.,
2012), terminus position (Bevan et al., 2012; Catania et al., 2018; Howat et al., 2007; McFadden et al., 2011;
Moon & Joughin, 2008; Murray, Scharrer, et al., 2015; Warren & Glasser, 1992), and ice discharge (Enderlin
et al., 2014; King et al., 2018). This work made obvious the idea that outlet glacier controls may be regionally
or locally variable.

During this time, there was also considerable research into the role of ice sheet surface meltwater in alter-
ing ice dynamics. Much research focused on land-terminating glaciers (Bartholomew et al., 2011; Das et al.,
2008; Joughin et al., 2008b; Sole et al., 2013; Zwally et al., 2002) because of the relative ease of making obser-
vations in these regions compared to heavily crevassed outlet glaciers. This work revealed the ice velocity
response to subglacial surface meltwater input on a range of time scales. While ice velocity increases rapidly
in response to changes in subglacial water storage (Bartholomaus et al., 2008), there are self-regulation pro-
cesses that permit efficiency to be gained in the subglacial system causing ice velocity slow down to occur
over longer time scales (Nienow et al., 2017; Tedstone et al., 2015). Similar controls are expected for out-
let glaciers, but observations using correlations between surface melt and ice flow speed in outlet glaciers
are sparse (De Juan et al., 2010; Moon et al., 2014). As our attention in recent years shifted to the ice-ocean
boundary, the important role of subglacially-routed surface meltwater as a driver of submarine melt and
terminus retreat, has emerged (Chauché et al., 2014; Fried et al., 2015; Motyka et al., 2003; Rignot et al.,
2010; Slater et al., 2015; Straneo et al., 2013) (see section 5.2.2). This somewhat unexpected mechanism by
which surface melt influences glacier dynamics illustrates the importance of examining mass loss processes
holistically to account for linkages between processes at the subglacial substrate, the ocean and atmospheric
boundaries, and the deep interior dynamics of the ice sheet.

This brief history highlights the importance of improved observations—higher resolution (spatial and tem-
poral) and a wider variety of observation type—to our deeper understanding of Greenland's outlet glacier
controls. Simultaneous development has also occurred in ice sheet model methodologies, which permit
greater data assimilation, higher resolution, improved model physics, and the development of competing
models. In combination, these advances support improved projections of future outlet glacier change.

5. Controls on Outlet Glacier Dynamics
While outlet glaciers extend far into the ice sheet interior, much work has focused on the terminus bound-
ary at the ocean because this is where the changes in mass balance have been the largest. GrIS outlet glacier
termini exist in an environment where they are influenced by external climatic factors like ocean and atmo-
spheric properties, as well as internal factors like substrate composition, geometric properties, and inland
dynamics (Figure 3; Carr, Stokes, and Vieli (2013)). Because changes in these factors can be superimposed
on, and interact with, one another, it is often difficult to attribute an observed glacier dynamic change to a
particular forcing factor. In general, however, change in terminus position over time arises from an imbal-
ance between ice flux from the interior and frontal ablation (i.e., the sum of iceberg calving (section 5.2.1)
and submarine melting (section 5.2.2)). Glaciers are expected to advance into their fjords if they are supplied
more ice from the interior than they lose. This could result from ice flux acceleration towards the marine
margin, surface snow accumulation in excess of surface melt (section 5.3), or reduced terminus ablation
rates. Glaciers are expected to retreat inland when ice flux from the interior does not match the loss of ice via
frontal ablation. This could occur from ice flux deceleration, increased calving and/or submarine melting
rates, or greater surface melting than snow accumulation. Terminus retreat usually induces outlet glacier
thinning, predominantly in downstream regions. This ice sheet surface steepening subsequently induces an
ice flow acceleration, but can also induce ice flow convergence, which may counteract acceleration. While
this pattern of outlet glacier dynamic change in response to retreat has been observed around the GrIS,
significant spatio-temporal heterogeneity in this response complicates our understanding of outlet glacier
controls.
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Figure 3. Conceptual diagram of outlet glacier processes at play in the terminal zone where the atmosphere, ice sheet,
substrate and ocean interact. Red arrow indicates the ocean heat forcing that is at depth in fjords. Black arrow indicates
that dynamic changes of outlet glaciers are more pronounced toward the glacier terminus. Blue arrows indicate
subglacial water, which upwells at the submarine terminus and rises along the terminus face carrying sediment and
nutrients (brown arrows) with it as well. Subglacial plumes, iceberg melt and far-field ocean circulation all act to
influence fjord circulation.

5.1. Morphological Controls
The geometry of an outlet glacier (width, surface, and bed topography) exerts a first-order control on dynam-
ics by influencing the force balance that governs ice flow (van der Veen & Whillans, 1989). Here we use the
term bed topography to mean the topography beneath the glacier and bathymetry to mean the topography
beneath the ocean within an outlet glacier fjord. Morphological controls on GrIS outlet glaciers include geo-
metrical effects and effects related to bed characteristics. This includes the presence or absence of till, till
rheology during deformation, and water pressure variations at the ice-bed interface. Little direct observation
of bed characteristics exists for the GrIS as a whole, with even fewer in outlet glacier regions owing to the
difficulty, and expense, in obtaining such observations. The basal regime beneath outlet glaciers is expected
to be thawed (MacGregor et al., 2016), although the exact relationship between bed conditions and ice flow
remains elusive (Minchew et al., 2019; Stearns & van der Veen, 2018; Stearns & van der Veen, 2019). Bore-
hole observations for a land-terminating region near the ice sheet edge confirm the presence of liquid water
at the base of the ice sheet at high-pressure conditions, enabling fast ice motion by reducing effective pres-
sure at the bed (Andrews et al., 2014). We expect similar processes to occur beneath outlet glaciers. Evidence
from seismic experiments also suggests that thick till is present in places (Walter et al., 2014) and is highly
porous (up to 40%) and thus weak (Dow et al., 2013; Walter et al., 2014), although this till is not ubiquitous
across the ice sheet (Harper et al., 2017).

Initial surveys of basal topography beneath GrIS outlet glaciers (e.g., Jakobshavn Isbrae) revealed that, unlike
the ice streams in Antarctica, most GrIS outlet glaciers flow in narrow (<10 km), deeply incised (<3‘km)
submarine troughs that are laterally constrained by bedrock, with flow driven by steep surface slopes (Clarke
& Echelmeyer, 1996; Truffer & Echelmeyer, 2003). Thanks to coordinated, long-term effort to complete
extensive ice-penetrating radar surveys, the basal topography has been constrained across a large portion
of the GrIS (Bamber et al., 2013; Gogineni et al., 2014; Studinger et al., 2010). Similarly, multibeam surveys
within several fjords near glacier termini have been collected to determine fjord bathymetry (Fenty et al.,
2016). These and other observations have been combined via the principle of mass conservation to produce
a spatially complete GrIS subglacial topography map, including estimates across the terminal zone of many
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outlet glaciers (Morlighem et al., 2017). This valuable map has been used to refine our early understand-
ing of the important role of topography on outlet glacier behavior (Hughes, 1975; Mercer, 1978; Weertman,
1961). For example, observations of recent glacier terminus position changes suggest near-terminus topog-
raphy is a critical determinant of terminus stability (Brough et al., 2019; Bunce et al., 2018; Catania et al.,
2018). Although not the case for all glaciers, outlet glacier termini that rest on retrograde slopes of termi-
nal moraines (termed sills in the oceanographic literature) are generally more susceptible to retreat given
an external forcing, and, once retreat begins, it may continue unabated until the terminus reaches a region
of prograde bed slope (Catania et al., 2018, Schoof et al., 2017; Haseloff and Sergienko, 2018). Uncertainties
in bed topography remain in under-sampled regions (Morlighem et al., 2017), however, and because outlet
glaciers are sensitive to even small-scale (less than a kilometer scale) topographic variations (Catania et al.,
2018; Enderlin et al., 2013), large uncertainties remain in projections of future outlet glacier behavior.

The deep subglacial trough that defines most GrIS outlet glaciers is likely formed through bed erosion over
multiple glacial cycles. Deeper troughs are formed in steeper regions of Greenland as a result of greater flow
convergence contributing to enhanced erosion (Kessler et al., 2008). This erosion both lowers the bed of out-
let glaciers and produces sediment that is transported to the grounding line where it can be deposited in the
form of a terminal moraine (Dowdeswell & Vásquez, 2013; Jaeger & Koppes, 2016). The presence of a ter-
minal moraine or sill helps to stabilize the terminus by (1) providing additional flow resistance (Brinkerhoff
et al., 2017; Morlighem et al., 2016), (2) limiting the warm water access to the terminus at depth (Bartholo-
maus et al., 2013), and (3) reducing buoyancy effects on calving (Enderlin et al., 2018; Post et al., 2011). In
fact, the presence of a moraine at the glacier terminus exerts such a profound control on dynamics that the
coupling between ice and sediment dynamics is considered to be solely responsible for the tidewater glacier
cycle, a pattern of slow advance and rapid retreat for marine-terminating glaciers that occurs in the absence
of climate forcing (Brinkerhoff et al., 2017; Post et al., 2011). Rapid retreat occurs as a result of instabil-
ity of the terminus position resting on a retrograde bedslope, as described above. Advance is controlled by,
amongst other things, the rate of sediment transport and is thus related to surface melt. The advance pro-
cess is slow because sufficient mass must be accumulated and transported to the terminus. To advance into
an overdeepened fjord area, a glacier must also bulldoze enough sediment into the overdeepening to suffi-
ciently inhibit frontal ablation and promote terminus advance (Brinkerhoff et al., 2017; Motyka et al., 2006;
Nick et al., 2009).

Although frictional resistance to flow provided by a terminal moraine/sill can help to stabilize glacier ter-
mini, generally little frictional resistance is provided at the glacier bed where the ice is close to flotation
(Enderlin, Carrigan, et al., 2018; Shapero et al., 2016; Stearns & van der Veen, 2019). As a result, the variable
width of the glacier fjord and the changes in width that accompany terminus movement also impact glacier
dynamics (Carr et al., 2013). Enderlin et al. (2013) found that, all else equal, glaciers with wider termini
and/or with geometries that widen inland of the terminus are more sensitive to climate perturbations than
their narrower counterparts. In fact, inland widening of the fjord may exert stronger control over retreat
than the presence or absence of a terminal moraine (Åkesson et al., 2018).

The geometry up-glacier of the terminus region also exerts control over outlet glacier dynamics. Following
terminus retreat, interior losses of ice occur as a result of terminus-induced diffusive thinning that propa-
gates into the interior (Price et al., 2011). Diffusive thinning is understood with kinematic wave theory (Nye,
1960; Pfeffer, 2007; van der Veen, 2001), which relates how a glacier dynamically adjusts to perturbations.
The extent of inland thinning for individual glaciers was recently shown to correlate to glacier geometry via
the Peclet number, a nondimensional number relating the rate of advection of a perturbation at the terminus
to the rate of diffusion (Felikson et al., 2017). Thinning limits occur at the heads of outlet glacier submarine
troughs where steep bed slopes restrict diffusive thinning from propagating farther inland, placing impor-
tant limits on the ability of some glaciers to contribute significantly to near-term sea level rise (Felikson
et al., 2017). Inland thinning observations following the near-synchronous 2005 retreat of SE Greenland
glaciers support a strong diffuse thinning dependence on surface slope: Up to 10s of meters of thinning were
observed along the steep, confined, fast-flowing outlet glaciers within years of terminus retreat with much
lower rates of thinning across the flatter interior Howat, Joughin, et al. (2008). Estimates of dynamic mass
loss from ice sheet models suggest that mass loss due to such diffusive thinning far outweighs mass loss that
directly results from terminus retreat, with 75% of estimated sea-level rise as the result of interior thinning
(Price et al., 2011).
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5.2. Oceanic Controls of Outlet Glaciers
5.2.1. Calving of Icebergs
Calving is a two-step process involving both the fracture and mechanical detachment of icebergs from the
glacier (Bassis & Jacobs, 2013). Although the precise mechanisms driving calving may vary in space and
time, observations and models of Greenland’s glaciers suggest that three major processes influence the
calving volume flux: (1) buoyancy at the terminus, (2) buttressing provided by ice mélange, and (3) under-
cutting via submarine melt (section 5.2.2). The relative importance of these processes likely varies widely
with glacier geometry, which broadly controls the ice flux towards the terminus, the stress balance at the
terminus, and the access of warm water to the terminus face.

Glaciers occupying deeply incised channels tend to approach buoyant conditions at their termini. Increases
in basal water pressure with subglacial channel depth (such that ocean water does not penetrate the glacial
hydrologic system) and the hydrostatic pressure imbalance at the terminus support a generally extensional
flow regime that promotes buoyancy at the terminus (Murray et al., 2015). Buoyant flexure at the grounding
line (Logan et al., 2013) likely supports basal crevasse formation (James et al., 2014; van der Veen, 1998).
Basal crevasses can propagate upwards via tidal pumping to connect to existing surface crevasses and cre-
ate large volume, full-thickness, laterally extensive iceberg calving events (Amundson et al., 2010; Bassis &
Jacobs, 2013; Fried et al., 2018; James et al., 2014; Murray, Selmes, et al., 2015). This buoyant-flexure-driven
style of calving can disrupt fjord stratification (Burton et al., 2012) and produce icequakes that are large
enough to be recorded globally (Ekstrom et al., 2006; Murray, Selmes, et al., 2015) as the iceberg rotates
backwards during detachment and scrapes the new terminus face and/or the subglacial substrate (Amund-
son et al., 2010). Since buoyancy-driven calving typically requires capsize of the full-thickness icebergs that
detach from the glacier; the rate of calving via this mechanism is sensitive to buttressing provided by the
mélange that occupies many Greenland fjords seasonally to perennially (Amundson et al., 2010; Amundson
& Burton, 2018; Fried et al., 2018; Robel, 2017). Glaciers that terminate in deep fjords containing seasonal
mélange are prone to larger seasonal oscillations in terminus position that are more directly correlated with
changes in mélange presence or strength (Cassotto et al., 2015; Fried et al., 2018; Howat et al., 2011; Moon
et al., 2015).

Outlet glaciers that are thinner and well-grounded appear to be less sensitive to mélange presence and more
sensitive to terminus melt (section 5.2.2), which can dramatically undercut portions of the terminus face
(Fried et al., 2015). Eventually, undercutting becomes sufficiently large and torques the overhanging ice
(which is typically heavily crevassed) to drive mechanical failure via iceberg sloughing (Bartholomaus et al.,
2012; Fried et al., 2015; O’Leary & Christoffersen, 2013). This calving style produces local terminus embay-
ments associated with regions where subglacial discharge emerges at the grounding line (Chauché et al.,
2014; Fried et al., 2018). The amount of seasonal terminus change associated with this calving style appears
to be directly controlled by the glacier surface melt volume flux via subglacial discharge (Fried et al., 2018).
A number of Greenland's outlet glaciers are thin and calve via sloughing, making this an important calving
mechanism.
5.2.2. Submarine Melting of Glacier Termini
Submarine melting of glacier termini—the direct mechanism by which the ocean can influence outlet
glaciers—has garnered increased attention as growing evidence points towards a correlation between Green-
land glacier dynamics and ocean conditions. For example, benthic foraminiferal data from Disko Bay in
western Greenland show a close correlation between Jakobshavn Isbrae terminus positions over the last
100 years and subsurface ocean temperatures (Lloyd et al., 2011). Further, modern observations indicate
widespread terminus retreat and thinning occurring when climate conditions promote elevated submarine
melt rates (Catania et al., 2018; Holland et al., 2008; Rignot et al., 2016; Straneo & Heimbach, 2013) and
slowing and thickening occurring when subsurface ocean waters cool (Khazendar et al., 2019). However,
no simple relationship exists between ocean and ice that is shared across glacier-fjord systems in Greenland
(Slater et al., 2019; Straneo et al., 2016). There are also few observational constraints on submarine melt-
ing, further complicating the effort to understand the ocean's forcing on glaciers. Instead the field has relied
heavily on untested theory and models to estimate melt rates and their variability.

Submarine melting observations in Greenland are limited and, for the most part, indirect. While the total
ice discharge is relatively well constrained at outlet glaciers Enderlin et al. (2014),King et al. (2018),Mankoff
et al. (2019), partitioning this ice discharge into calving and submarine melting is an ongoing challenge.
Melt rates have been derived from satellite data for floating ice tongues (Enderlin & Howat, 2013; Motyka
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et al., 2011; Wilson et al., 2017), but these methods are not possible for the grounded or near-grounded
termini that are most prevalent around Greenland. The total submarine meltwater flux can be estimated by
measuring the oceanic transports of heat, salt, and mass through a fjord, called the flux-gate or fjord budgets
method (Jackson & Straneo, 2016; Motyka et al., 2003, 2013). In Greenland, this method has been applied
to synoptic ocean surveys (Inall et al., 2014; Rignot et al., 2010) and long-term moored records (Jackson &
Straneo, 2016). However, this approach measures the total submarine meltwater from all upstream icebergs
and glaciers and can have substantial errors from limits on the oceanographic record temporal and spatial
resolutions (Jackson & Straneo, 2016). Finally, in Greenland, the terminus morphology has been measured
with multibeam sonar and used to indirectly estimate or validate melt rates (Fried et al., 2015; Rignot et al.,
2015). In Alaska, repeat sonar scans that track the terminus evolution in time—combined with records of
ice velocity and calving—have provided a more direct estimate of melt rates (Sutherland et al., 2019), but
these new methods have yet to be applied in Greenland.

Without direct measurements of submarine melting, our understanding of the ocean's impact on glaciers
is currently limited by three main factors: (1) limited observations and knowledge of the controls on
near-glacier ocean conditions in fjords, (2) lack of a validated theory for predicting melt rates based on
near-glacier ocean conditions, and (3) unclear impact of submarine melting on calving and upstream glacier
dynamics.

Submarine melting is expected to be a function of the near-glacier ocean conditions (temperature, salin-
ity, circulation) and the subglacial discharge flux that forms from surface melt (Jenkins, 2011; Slater et al.,
2015). Because of the valley morphology created by outlet glaciers and the large fluxes of surface meltwater
delivered seasonally to the glacier bed, meltwater is likely routed to the base of the ice and down the main
trunk of the glacier to the grounding line via a few relatively stable subglacial conduits (Fried et al., 2015;
Lewis & Smith, 2009). At the terminus, this meltwater is ejected into the fjord at the glacier base and subse-
quently rises due to buoyancy, forming energetic plumes that entrain warmer ocean waters (Bendtsen et al.,
2015; Mankoff et al., 2016; Motyka et al., 2003). Subglacial discharge drives enhanced turbulent transfer of
ocean heat across the ocean-ice boundary layer, and thus, the overall rate of ocean heat delivery to the ter-
minus will be function of the subglacial discharge flux and its distribution along the terminus (Carroll et al.,
2015; Jenkins, 2011; Sciascia et al., 2013; Slater et al., 2015; Xu et al., 2012). Consequently, submarine melt-
ing is expected to be intimately coupled with atmospheric conditions, complicating the task of separating
the oceanic versus atmospheric forcing of the GrIS.

The field has relied heavily on theory and models to derive melt rates as a function of the near-glacier ocean
conditions and the subglacial discharge flux. A three-equation melt parameterization is typically used to
calculate the terminus melt rate as a function of ice-adjacent ocean temperature, salinity and velocity, using
empirical coefficients that have been derived from studies of sea ice and ice shelves (horizontal ice-ocean
interfaces), and thus are not necessarily applicable to Greenlandic glaciers (Holland & Jenkins, 1999; Jenk-
ins et al., 2010; McPhee et al., 1987; Straneo & Cenedese, 2015). Often this melt parameterization is coupled
to a plume model from buoyant plume theory (Jenkins, 2011; MacAyeal, 1985), which is a well-developed
theory to describe the evolution of a source of buoyancy (freshwater from subglacial discharge and subma-
rine melt in this case) as it rises through a stratified fluid (Morton et al., 1956). The plume model estimates
the ice-adjacent ocean temperature, salinity, and velocity (∼1 m from ice) based on the far-field ocean prop-
erties (>10–100 m from the ice) and the subglacial discharge flux. The ice-adjacent conditions are then
plugged into the melt parameterization to calculate a melt rate. This coupled plume-melt theory has seen
widespread use for estimating melt rates in several ways: on its own (Jenkins, 2011; Magorrian & Wells,
2016; Slater et al., 2016), in numerical ocean models (Carroll et al., 2017; Cowton et al., 2015; Kimura et al.,
2014; Sciascia et al., 2013), and in observational studies that measure near-glacier ocean conditions (Jack-
son et al., 2017; Mankoff et al., 2016). In the last case, melt rates are derived using near-glacier observations,
but the resulting melt rates should still be regarded as theoretical or modeled, not observationally validated.

Coupled plume-melt theory has been used to describe two regimes of melting across the terminus: (1)
discharge-driven melting where vigorous plumes from subglacial discharge upwell along the terminus and
(2) ambient melting away from discharge outlets. Because melting is expected to scale with ice-adjacent
plume velocity (Holland & Jenkins, 1999; Jenkins, 2011), energetic discharge plumes should drive elevated
melting, while ambient melt rates should be associated with less vigorous velocities and lower melt rates.
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As a result, ambient melt is typically assumed to be negligible compared to discharge-driven melting, result-
ing in a focus on discharge-driven melting (Carroll et al., 2016; Cowton et al., 2015). This has led to recent
progress in characterizing subglacial discharge plumes with observations from remotely operated kayaks
and tagged seals (Everett et al., 2018; Jackson et al., 2017; Mankoff et al., 2016) and high-resolution ocean
models of discharge plumes (Ezhova et al., 2018; Kimura et al., 2014; Xu et al., 2012).

Although models and theory indicate that ambient melt is negligible compared to discharge-driven melt,
new observations suggest that ambient melt may play a significant role in the net terminus ablation (Slater
et al., 2018; Sutherland et al., 2019; Wagner et al., 2019). If buoyancy from submarine melt and subglacial
discharge is the only driver of ocean velocity along the terminus, then the ambient melt regime will be char-
acterized by weak plumes that rise over a short distance (on the order of 1–10 m) and then intrude into the
fjord in a series of stacked layers (Magorrian & Wells, 2016). However, this framework neglects the realis-
tic 3-D structure of ocean circulation along the terminus. Slater et al. (2018) combine an ocean model with
observed near-glacier velocity to show that horizontal recirculations from the discharge plume will enhance
ocean velocity over large swaths of the terminus and likely elevate ambient melt rates, which is corroborated
by the surface morphology and ice flux budget in Wagner et al. (2019). At LeConte Glacier in Alaska, direct
estimates of submarine melting from multibeam sonar (Sutherland et al., 2019) and near-glacier surveying
by autonomous kayak Jackson et al., (2019) reveal that ambient melt rates may be 100× higher than expected
from standard plume-melt theory—likely due to a combination of the horizontal velocity field (Slater et al.,
2018) and errors in the empirical coefficients that are critically embedded in the melt parameterizations.
Though the magnitude of ambient melt at Greenlandic glaciers has yet to be directly measured, these studies
suggest that both submarine melt regimes (discharge-driven and ambient melt) are critical to the total ter-
minus ablation. The growing discrepancy between melt theory and observations highlights a need for new
observations at the ice-ocean boundary to develop an updated, generalizable theory for submarine melting.

The intertwined dynamics of melting and subglacial discharge might play an important role in understand-
ing where and how submarine melting can effect calving. Subglacial plumes can reach the surface—if the
grounding line is relatively shallow, discharge is sufficiently large, and/or if fjord stratification is weak—and
can be visible as a vigorous, sediment-laden plume in satellite images (Fried et al., 2015; Jackson et al., 2017;
Mankoff et al., 2016). While lower discharge plumes may not rise as high in the water column, the impact
of buoyant plumes on terminus melt can be large even for small discharge plumes (Carroll et al., 2016), par-
ticularly if sufficient melting near the grounding line generates an overhanging geometry that is favorable
to calving via sloughing (Fried et al., 2015; Fried et al., 2019; Slater et al., 2017). In fact, submarine melt and
subaerial calving of overlying ice in the vicinity of subglacial conduits are the dominant mechanisms driving
seasonal terminus change for thin, well-grounded outlet glaciers in west Greenland (Chauché et al., 2014;
Fried et al., 2018; Luckman et al., 2015), and possibly around the ice sheet. This causes thin glaciers to form
local terminus embayments in the vicinity of subglacial conduits and often visible surface sediment plumes
(Fried et al., 2018). Thicker glaciers likely also experience submarine melt and terminus undercutting near
subglacial conduits, but the thick ice possibly insulates against downward surface crevasse propagation, and
as a result, the seasonal retreat pattern is more uniform across the glacier width (Fried et al., 2018).

5.3. Atmospheric Controls on Outlet Glaciers
The net ice sheet surface mass balance is primarily the result of an imbalance between winter snowfall
accumulation and summer surface melt. Although Greenland air temperatures have been increasing since
the mid-20th century (Trusel et al., 2018), mean summer temperatures across the GrIS became positive
in the mid-1990s (Mernild et al., 2011; van den Broeke & Lenaerts, 2014). In response to this combined
natural and anthropogenic atmospheric warming, GrIS surface melt has increased substantially (Fettweis
et al., 2017; Noël et al., 2017; van den Broeke et al., 2016), resulting in a decreasing trend in SMB of 10.2 Gt
yr−1 during 1991–2015 (van den Broeke et al., 2016). However, because the atmospheric state can change
dramatically over annual and shorter timescale and because Greenland SMB is highly sensitive to atmo-
spheric conditions, variations in SMB are significant (Box, 2013). For example, the long-term trends in
atmospheric warming and particularly strong GBI combined in 2012, resulting in GrIS meltwater runoff
that was unprecedented within at least the last 350 years (Trusel et al., 2018).

Both long- and short-term variations in SMB can have appreciable impacts on ice flow. Just like their
land-terminating counterparts, outlet glaciers are susceptible to surface climate changes that impact surface
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slopes: Surface melt causes surface elevation lowering that is enhanced at lower elevations, where temper-
atures are warmer thus steepening the outlet glacier surface (Felikson et al., 2017; Noël et al., 2016). This
can create a positive feedback that enhances ice flow into warmer, low-elevation regions and further exac-
erbates differences in melt and slope. Changes in outlet glacier surface slopes from along-glacier surface
melt are not well investigated, although rates of surface melting at the termini of some outlet glaciers exceed
1 m/year water-equivalent (Noël et al., 2016). The influence of surface melt on surface slope is the primary
means by which climate influences ice dynamics in earth system models, not necessarily because it has the
largest influence on dynamics, but because its effects on ice flow are well understood.

In addition to SMB-linked slope changes, the generation and variability of surface melt has importance for
multiple processes operating on outlet glaciers including: (1) subglacial discharge, which drives submarine
terminus melt, calving, and fjord circulation (discussed above); (2) the spatio-temporal distribution of sub-
glacial water pressures, which influence friction at the ice-bed interface; and (3) changes in ice rheology
from release of latent heat due to refreezing of meltwater within voids, like crevasses and moulins, in the ice
sheet. These processes influence outlet glacier behavior over a wide range of time and space scales, demon-
strating the important role of surface climate forcing on the future evolution of outlet glaciers. There has
been considerable work done to build regional GrIS climate models (Fettweis et al., 2017; Noël et al., 2017),
and these models are well-validated where observations permit (Vernon et al., 2013). Validation sites are lim-
ited, however, and there is currently no way to validate the time-varying discharge of subglacial water that
runs off the GrIS into the ocean. Research addressing this question for subglacial runoff in land-terminating
areas suggests variable model success in capturing observations (Smith et al., 2017)

Around the GrIS margins, where melt exceeds local storage capacity, the vast majority of surface meltwater
is efficiently routed to the ice-bed interface through moulins (Catania & Neumann, 2010; Das et al., 2008;
Smith et al., 2017). The spring onset of meltwater flux to the bed raises subglacial water pressure at the
ice-bed interface because of limited water storage capacity and decreases friction at the bed, facilitating
faster ice flow (Andrews et al., 2014; Iken et al., 2017; Meierbachtol et al., 2013). Such observations are taken
from land-terminating parts of the ice sheet using boreholes to suggest that the subglacial drainage system
(and thus the water pressure distribution at the bed) is complex and composed of both subglacial conduits
that are sensitive to creep closure and unchannelized bed regions that gain efficiency as the melt season
progresses (Andrews et al., 2014; Bougamont et al., 2014; Hoffman et al., 2016). Observations suggest that
there is good agreement between regionally modeled ice sheet runoff and ice flow speed in outlet glaciers
(Moon et al., 2014; Rathmann et al., 2017), but it is not clear if this is a direct relationship because runoff can
alter subglacial hydrology as well as enhance upwelling, melt, and retreat at the terminus (Fried et al., 2018);
both of which will influence ice flow resistance. A few studies have examined the influence of subglacial
conditions on outlet glacier ice flow speeds using surface and/or borehole geophysics, finding that a highly
deformable ice layer exists near the base of each glacier, which is interpreted to be temperate pre-Holocene
ice that contributes substantially to total ice motion (Hofstede et al., 2018; Lüthi et al., 2002). Further, outlet
glaciers are likely to be underlain with subglacial sediments (Christianson et al., 2014; Hofstede et al., 2018;
Walter et al., 2014), with complex spatial patterns of basal slipperiness and suggesting that basal conditions
for outlet glaciers may vary over small (∼100 m) scales. Finally, because glaciers terminate in the ocean with
water depths of 10s–100s of meters, high water pressures exist year round and seasonal changes in flow at
glacier termini can result in ice thickness changes that are felt far inland (Young et al., 2019).

Although the majority of surface meltwater routes efficiently to moulins (Smith et al., 2017), there is some
evidence for meltwater retention within or beneath the ice sheet. If englacial water refreezes, it releases
latent heat into the surrounding ice in a process termed cryo-hydrologic warming (Phillips et al., 2010).
Indeed, temperature profiles in boreholes reveal warmer englacial temperatures than would be present from
heat diffusion and dissipation alone (Harrington et al., 2015; Lüthi et al., 2015). This heat has the ability to
soften the ice, which has a temperature-dependent rheology and may be responsible for some of the observed
enhanced ice flow in Greenland (Poinar et al., 2016; van der Veen et al., 2011). Where fast speeds reduce
the transit time for ice through the ablation zone (where surface melt is generated), however, the potential
impact of cryo-hydrologic warming is likely small (Poinar et al., 2016). In addition to ice temperature and
water content, ice viscosity is also a function of the effective strain rate. Bondzio et al. (2017) show that
sustained Jakobshavn Isbrae acceleration, following the termination of a retreat period, is due to a decrease
in ice viscosity by four orders of magnitude. Because of low basal drag for Jakobshavn Isbrae, most of the
driving stress is supported by the lateral shear margins (Shapero et al., 2016; van der Veen et al., 2011), and
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Figure 4. Impacts from GrIS outlet glaciers are felt across a range of spatial
scales all of which are key remaining unknowns ripe for future research.

sudden changes in the calving front induce stress perturbations that
promote an instantaneous drop in ice viscosity within the shear mar-
gins, which further weaken via strain heating (Bondzio et al., 2017).
Such observations suggest that ice sheet thermal processes and ice sheet
viscosity changes are critical to model to understand changing outlet
glaciers.

6. Impacts of a Changing GrIS to the Arctic
While mountain glaciers and ice caps were the largest land ice contribu-
tor to sea level rise during the 1990s and 2000s (compared to Greenland
and Antarctica), the GrIS began to match and exceed that contribution
around 2013 (Chen et al., 2017). The much larger reservoir of poten-
tial sea-level rise contained in the GrIS (7.42±0.05 m (Morlighem et al.,
2017)), versus mountain glaciers and ice caps (0.32±0.08 m (Farinotti
et al., 2019)), gives Greenland the capacity to maintain current (or higher)
loss rates much further into the future. This underlies the importance of
understanding the mechanisms responsible for mass change in order to
improve estimates of the rates of change that are possible. The projected
range of future GrIS mass loss across different greenhouse gas emissions
scenarios (Vaughan & Comiso, 2014) shows strong overlap over the next
several decades, but diverges substantially over the next several centuries
(Aschwanden et al., 2019; Clark et al., 2016; Mengel et al., 2016). Projec-
tions of future GrIS mass loss under an RCP8.5 forcing (a representative
concentration pathway producing 8.5 W/m2 radiative forcing in 2100
(Vaughan & Comiso, 2014)) suggest that GrIS mass loss could reach up
to 33 cm by 2100 (Aschwanden et al., 2019). Between 1972 and 2018, the

ice dynamics contribution to total mass loss was 66±8% (9.1 mm), and SMB was 34±8% (4.6 mm) (Moug-
inot et al., 2019); however, as air temperatures continue to increase, large surface melt events (Nghiem et al.,
2012) will occur with increased frequency (Trusel et al., 2018), and SMB losses are expected to increase
(Aschwanden et al., 2019; Fyke et al., 2014). Unfortunately, partitioning future mass loss from Greenland is
still difficult owing to uncertainties in surface melt processes (Aschwanden et al., 2019; Fürst et al., 2015)
and the complexities of interconnected mechanisms described above.

The impacts of GrIS mass loss not only depend on the magnitude of mass loss, but its spatial distribution as
well. Local sea-level change experienced in coastal cities is sensitive to the “fingerprints” of mass loss from
the ice sheets—the amount of SLR expected across the globe depends on where the mass loss is concentrated
(Larour et al., 2017; Mitrovica et al., 2009; Mitrovica et al., 2018). For example, in the United States, Los
Angeles will experience greater sea-level rise due to Greenland mass loss than New York, and most U.S.
locations are more sensitive to eastern Greenland mass loss than western Greenland mass loss (Larour et al.,
2017).

Spatial variations in the delivery of freshwater (and sediments) to the ocean via outlet glaciers also affects
ocean dynamics and nutrient fluxes (Figure 4). This freshwater influences ocean stratification and circu-
lation, both locally within fjords and regionally around the continental shelves of Greenland. Freshwater
input from glaciers—from subglacial discharge and submarine melting of glaciers and icebergs—can drive
a fjord-wide exchange flow (Carroll et al., 2015; Sciascia et al., 2013), which may impart a positive feedback
on future ice mass loss from Greenland by enhancing ocean heat delivery through fjords (de la Guardia et al.,
2015). Additionally, these sources of freshwater enter the ocean at depth (often many 100s of meters below
the surface) and drive vigorous upwelling of deep waters. Thus, Greenland outlet glaciers impact the ocean
both as a source of a freshwater and as a powerful mechanism for vertically redistributing oceanic waters
masses, pumping heat and salt from the deep ocean to the surface layer (Beaird et al., 2015; Beaird et al.,
2018).

The partitioning of mass loss between solid and liquid components is also important, as the timing of iceberg
melt is offset from other sources (e.g., peaking in fall rather than summer) and iceberg melt injects freshwater

CATANIA ET AL. 14 of 28



Journal of Geophysical Research: Earth Surface 10.1029/2018JF004873

into the surface of the ocean over much broader regions (Enderlin et al., 2018; Moon et al., 2017). The ratios
of solid to liquid freshwater flux vary substantially around the ice sheet (Enderlin et al., 2014; Mouginot et al.,
2019), with iceberg freshwater fluxes dominant over all other terms in fjords connected to high discharge
outlet glaciers (Enderlin et al., 2016; Moon et al., 2017). At the ice sheet scale, however, liquid freshwater
fluxes from GrIS meltwater runoff dominate solid fluxes (∼1300 to ∼1170 km3 yr−1) with small liquid fluxes
from Greenland's peripheral glaciers and ice caps (∼920 km3 year−1) and terrestrial runoff (∼860 km3 year−1)
since 2010 (Bamber et al., 2018). Variations in the magnitudes of these freshwater flux components impact
the circulation pathways of the freshwater in the Arctic (Böning et al., 2016; Luo et al., 2016), with the
capacity to impact deep water formation in the North Atlantic and globally (Böning et al., 2016).

Outlet glaciers are also important for producing and redistributing nutrients to the Arctic ocean (Cape et al.,
2018; Hopwood et al., 2018; Kanna et al., 2018; Meire et al., 2015; Meire et al., 2017; Overeem et al., 2017).
There are two primary mechanisms at play: (1) direct nutrient input to the grounding line via subglacial dis-
charge that supplies turbid melt water and (2) enhanced nutrient upwelling from the deep ocean due to the
input of subglacial discharge at depth. Research at multiple marine-terminating glaciers around Greenland
suggests the second mechanism is more important, with upwelling nitrate fluxes that are 10 times larger
than discharge fluxes (Cape et al., 2018; Hopwood et al., 2018; Kanna et al., 2018), and direct comparison
of fjord productivity near marine-terminating versus land-terminating glaciers confirms the importance of
deep water input from marine-terminating glaciers for sustaining high productivity (Meire et al., 2017). In
addition, the surface layer in fjord systems is undersaturated in CO2 due to the input of glacial meltwater,
indicating that fjords are strong CO2 sinks (Meire et al., 2015) and thus important, but overlooked, compo-
nents of the Arctic carbon cycle. As outlet glaciers continue to retreat into the interior of the GrIS, many will
retreat up subglacial beds that rise steeply above sea level behind the present-day terminus (Catania et al.,
2018), effectively eliminating their connection to the ocean. This decoupling of glaciers (and their meltwa-
ter) from the ocean will have important consequences for the timing and spatial distribution of nutrient
delivery and the carbon cycle in the Arctic ocean (Hopwood et al., 2018; Meire et al., 2015).

7. Future Research Needs
At the heart of improved predictions of outlet glacier contributions to sea level and freshwater forcing of
neighboring ocean basins is our ability to accurately model outlet glacier dynamic changes and how these
changes influence, and are influenced by, climate. In turn, this requires improved understanding of the
processes that influence glacier dynamics and concerted effort to link ice sheet models to existing ocean
and atmosphere models. Importantly, these links need to be two way because of the intimate interplay of
processes at work driving change at the ice sheet margin, and the ability of this change to, in turn, impact the
global climate system (Golledge et al., 2019). Thus, future research advances require more observations of
critical processes that govern glacier dynamics, better integration of critical processes (e.g., terminus change)
in numerical ice flow models based on these observations, and continued development of, and collaboration
within, an interdisciplinary and diverse scientific community.

7.1. Meeting Observational Needs
Spaced-based observations of Earth's glaciers and ice sheets have been acquired at an accelerated pace over
the last few decades as new satellite missions are launched (e.g., ICESat and GRACE), existing ones are
prolonged (e.g., Landsat, ICESat-2, GRACE-FO, CryoSat-2, Sentinel), and nongovernmental agencies have
become involved in polar imaging (e.g., DigitalGlobe). These instruments provide observations of many of
the essential variables involved in glacier dynamic changes including surface elevation, terminus position,
and surface speed. The timescales of data acquisition have also improved with many observations made at
month-to-seasonal frequency, which is necessary to remove observation biases. Surface speeds and eleva-
tions are now automatically generated for the entire ice sheet and provided to public databases with regular
updates (Fahnestock et al., 2016; Howat, 2017; Howat et al., 2014; Joughin et al., 2010; Rosenau et al., 2015).
Care must be taken to ensure long-term continuation of these important observations, particularly for stud-
ies that examine the attribution of ice sheet change to anthropogenic and/or natural climate change, as has
been done for alpine glaciers worldwide (Marzeion et al., 2014). The extraction of terminus positions from
satellite data, on the other hand, remains a manual process performed as needed by individual researchers.
Machine learning techniques are beginning to make this task less onerous (Lea, 2018; Mohajerani et al.,
2018), although terminus mapping in the often cloudy, ice-congested, and seasonally shadowed condi-
tions may still require semimanual delineation by a well-trained operator, a particularly time-consuming
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endeavor. We encourage community collaboration to rapidly make these records available for the satellite
data archive and continued efforts focused on automated picking of termini. These data will be valuable
for multiple reasons, but importantly by identifying terminus “hot spots” over the satellite era (regions of
focused, rapid change), we can focus ice sheet models to produce higher resolution solutions for individual
glacier basins and use these estimates to update sea-level predictions.

Important observational gaps also exist in terms of understanding how subglacial processes influence glacier
dynamics, noted by the lack of an agreed-upon sliding law (Joughin et al., 2019). While additional in-situ geo-
physical observations are needed (e.g., drilling, passive and active seismic, etc.), such observations are costly
and logistically difficult on heavily crevassed outlet glaciers. Further, while models have rapidly accelerated
in development to the point where now they can reproduce the bulk of some of the hard-won observa-
tions (Hoffman et al., 2016; Stevens et al., 2018; Werder et al., 2013), many of these observations take place
on land-terminating portions of the ice sheet. Evidence from ground-based geophysics on a small number
fast-moving outlet glaciers points to a sediment layer on the order of 100 m thick that underlies with highly
variable slipperiness (Christianson et al., 2014; Hofstede et al., 2018; Walter et al., 2014). This suggests a need
for additional ground-based observations aimed at characterizing the possible range of subglacial conditions
that exist under outlet glaciers. Further, since subglacial erosion and deposition contribute to changes in
subglacial water pressure (Andrews et al., 2014; Catania & Paola, 2001), and influence glacier stability (Alley
et al., 2007; Brinkerhoff et al., 2017; Nick et al., 2007), the rates of these processes need to be measured as
well. Additionally, understanding how subglacial drainage evolves over time and how this, in turn, influ-
ences outlet glacier velocity is still uncertain and ripe for additional model development. In particular, the
redistribution of stresses within an outlet glacier are likely to adjust on a range of time scales in response to
changing subglacial conditions. Estimates of glacier stresses minimally require time-evolving observations
of surface speed and elevation. Sufficiently highly resolved surface topographic observations are available
at least annually (Porter et al., 2018); however, shorter time scale changes may also be relevant (Enderlin,
Carrigan, et al., 2018). In addition, it is unclear how basal resistive stresses behave outside of the regions
covered with subglacial conduits, arguing for increased spatial resolution in observational data needed for
force balance studies.

In addition to its influence on basal properties, surface melt plays a critical role in controlling outlet glacier
dynamics through its influence on submarine terminus melt hence possibly the rate of calving. Unfor-
tunately, we currently lack the ability to regularly and uniformly validate subglacial discharge estimates
in the submarine environment. Most estimates come from regional climate model evaluations of surface
melt-derived runoff with routing via the subglacial drainage system. Partitioning of runoff within a given
drainage system introduces errors in runoff estimates, and some meltwater could be stored subglacially or
in the surface firn layer (Forster et al., 2014; Rennermalm et al., 2013). Seismic techniques have been proven
viable to elucidate patterns in subglacial water movement and storage (Zhan, 2019) as well as subglacial
discharge flux through time (Bartholomaus et al., 2015), and we argue for widespread observations of sub-
glacial tremor in Greenland in order to reduce uncertainty in model-based estimates of subglacial water
storage, transport, and discharge.

The ocean influence on the GrIS has recently been a target for accelerated research with three emerging
research needs related to ice-ocean interactions. The first need involves understanding the ocean conditions
near glacier termini, how they vary in time, and what drives this variability. This involves understanding the
drivers of ocean circulation at the fjord scale and fjord-shelf exchange, as well as larger scale ocean processes
(the origin of AW and PW, decadal variability, etc.). While there has been considerable progress on this over
the last few decades, we critically lack systematic, long-term monitoring of ocean properties around the GrIS
(Straneo et al., 2019). This should include observations of heat content and fjord/shelf conditions with an aim
to improve understanding of how fjord and shelf properties are related to near-glacier properties and then
how those are related to melt rates at glacier termini. In addition, we prioritize velocity data within fjords
because these data are critical for understanding fjord-scale processes, measuring freshwater export, and
monitoring heat transport. Many groups have conducted difficult and expensive observational campaigns to
obtain moored observations in select glacier fjords and around the GrIS (Carroll et al., 2018; Gladish et al.,
2015; Gladish et al., 2015; Mortensen et al., 2014; Straneo et al., 2016), but these efforts only began within
the past ∼10 years and are often not maintained long term, so there remains a limited understanding of
the temporal evolution in ocean forcing of the ice sheet. There is significant opportunity for coordinated
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ocean-observing platforms as suggested by Straneo et al. (2019) to overcome these observational bottlenecks
and provide critical data necessary to address this need.

The second research priority related to ice-ocean interactions involves improved understanding of termi-
nus submarine melt rates and how they relate to ocean conditions near the terminus. There has been rapid
advancement in obtaining observations close to glacier termini via autonomous platforms (Jackson et al.,
2017; Mankoff et al., 2016), but these have been limited to a few glaciers and do not allow for direct measure-
ments of melting nor validation of modeled melt rates. In addition, the existing near-glacier observations are
taken in summer, when glacier termini are easier to access by boats; however, biases in the spatial and/or
temporal coverage of observations may limit our understanding of the seasonal evolution of melt processes.
Finally, recent studies (Carroll et al., 2016; Slater et al., 2018; Sutherland et al., 2019) suggest that melt rates
might be significantly underestimated by the prevalent melt parameterizations (Holland & Jenkins, 1999;
Jenkins, 2011; Magorrian & Wells, 2016). Thus, we argue for more observations—near the ocean-ice bound-
ary and across a range of glacier-fjord systems—to obtain a generalized, observationally validated theory
that can link terminus melt rates to ocean conditions and subglacial discharge flux.

The third research need for ice-ocean interactions involves improving our understanding of how subma-
rine melt impacts the glacier, including calving. Observations of melt-induced calving primarily come from
smaller glaciers that do not have iceberg-congested fjords, biasing our understanding of calving processes to
these glaciers. We have no estimates for how important submarine melt is for large-flux, deeply grounded
outlet glaciers with persistent, year-round mélange. In particular for these larger glaciers, the importance
of submarine melt on the propagation of basal crevasses may be important to determining the calving flux
(James et al., 2014; Murray, Selmes, et al., 2015).

A final observational need includes improved estimates of fjord bathymetry and basal topography in ter-
minus regions of outlet glaciers. These data are of fundamental importance to glacier stability, as well as
to understanding ocean heat transport to the ice sheets and freshwater exchange with the Arctic Ocean.
Despite the rapid acquisition of new observations from projects like oceans-melting-greenland in many
fjords (Morlighem et al., 2016), there remain numerous glaciers where topography is poorly constrained,
primarily those along Northern Greenland (Morlighem et al., 2017). Many of these fjords, as well as those
along SE Greenland, are choked with icebergs year-long, making it difficult to gain ship access close to the
glacier termini. Further, radar-based efforts to map the ice sheets are to be commended for the rapid pace
at which observations have accelerated; however, the heavily crevassed, meltwater-rich, deep outlet glaciers
remain a challenge for radar-energy propagation to the bed. Observations of basal topography for a few key
outlet glaciers should be prioritized, possibly through drone, or helicopter support.

7.2. Including Critical Processes in Models
Over the last several years, as the sensitivity of GrIS outlet glaciers to changes in atmospheric and oceanic
forcing has become more apparent, there have been tremendous advances in our understanding of critical
processes controlling ice dynamics as well as in numerical modeling of glaciers and ice sheets. However,
progress in observations and models has largely occurred side-by-side, with a few exceptions where obser-
vations for a specific glacier system are sufficiently dense that observation-based numerical modeling of the
coupled ice-atmosphere-ocean system can be performed (Bondzio et al., 2017; Seroussi et al., 2014; Todd
et al., 2018). As a result, we argue for model development to prioritize the inclusion of data via assimila-
tion techniques (Goldberg et al., 2015; Heimbach et al., 2019) to produce ice sheet projections that are fully
consistent with past observations. In part, this remains a challenge because of the lack of observations of
changing bed and terminus conditions, but also because of the possibly high dependence of ice dynamics to
unmeasured quantities (e.g., small-scale bathymetry or bed characteristics, factors influencing ice rheology).
Further, this requires an assurance that data—including processes study results—are findable, accessible,
interoperable, and reusable (FAIR) (Wilkinson et al., 2016). This includes efforts to establish and use stan-
dard data formats and to create suites of data that are curated to tackle interdisciplinary science questions.
Well-designed data access and visualization systems are also invaluable for reducing startup times for new
research and researchers, facilitating connections between glaciology and other disciplines and providing
tools and information for connecting with stakeholders.

The shift in focus to more realistic boundary processes in numerical ice flow models should result in the
development of parameterizations that can be feasibly implemented into large-scale numerical models (i.e.,
that have reasonable computational demands). This task is challenging for several reasons. First, there is
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still debate on how to parameterize important processes like submarine terminus melt, calving, and basal
sliding. The recent surge of new observational data around the GrIS has enabled observation-based test-
ing of a number of existing process parameterizations that control glacier flow (Bondzio et al., 2017; Choi
et al., 2017; Choi et al., 2018; Enderlin & Bartholomaus, 2019; Stearns & van der Veen, 2018), but these
must be generalized across all glacier systems and validated with observations. Second, improvements in
model resolution and nested modeling techniques are beginning to allow full ice sheet models to resolve
outlet glaciers (Aschwanden et al., 2016; Aschwanden et al., 2019), but resolution challenges continue. On
the oceanic side, connecting ocean processes across a range of scales, from the continental shelf to the tur-
bulent ice-ocean boundary layer, remains an open challenge to the research community. Small-scale plume
models (∼1 m resolution) can resolve the upwelling plumes at glacier termini; fjord models (∼100 m reso-
lution) capture larger circulation patterns between the glacier and shelf ocean, and regional models (∼1 km
resolution) reveal shelf and subpolar gyre dynamics. Typically, these scales are studied separately, but going
forward these various scales must be integrated more effectively in order to model the interaction between
the large-scale ocean and the GrIS.

Third, several of the processes important to ice-ocean interactions require coupling to atmospheric param-
eters, and integration across all of these models is challenging, particularly given the observed sensitivity
of the GrIS to atmosphere and ocean change and the substantial uncertainties in future atmospheric and
oceanic conditions (Pattyn et al., 2018). This is hard and costly, but remains a necessary step so that ocean
models no longer ignore solid ice discharge (Luo et al., 2016), convert solid ice discharge immediately to
liquid flux, and/or input all freshwater into the ocean surface (Böning et al., 2016; Gillard et al., 2016) but
instead incorporate time-evolving partitioned freshwater fluxes appropriately. Simpler modeling approaches
could, and have been, applied to project glacier or changes in glacier boundary conditions over shorter
timescales. For example, Bamber et al. (2018) use the relationship between SMB and ice discharge esti-
mates to extrapolate discharge to years without observations. Slater et al. (2019) use relationships between
observed terminus change and submarine melt estimates, forced using future atmospheric change scenarios,
to predict 21st century GrIS terminus change. Although there is utility in these methods, they are unlikely to
yield accurate projections of GrIS mass loss over long time scales since the evolution of the glacier geome-
try as it recedes will undoubtedly influence its sensitivity to climate change and ice discharge. Thus, despite
the difficulties coupling numerical models and uncertainties in these models, they are the most likely to
yield accurate mass loss estimates and we recommend that future modeling efforts focus on their continued
development.

7.3. Community Coordination and Capacity Building
Solutions to many of the research challenges presented above are within reach, given sustained, coordi-
nated funding. More frequent in-situ observations of deep ocean circulation around the GrIS coupled with
long-term observations within multiple glacial fjords would provide much-needed data to test parameteri-
zations of ice-ocean exchanges. Thus, there is significant opportunity for funding agencies to work across
internal boundaries and with international partners to facilitate the development and maintenance of such
observations. In lieu of large funding schemes for collaborative observational platforms, we urge the dis-
mantling of boundaries that hamper intellectual collaboration. The recent rapid growth of interest in outlet
glaciers in Greenland, and ice-ocean interactions in particular, has been matched with rapid expansion of
knowledge on processes and information that would have taken the previous generation of glaciologists
much longer to acquire in isolation. We argue for an even more expansive community of scientists interested
in the GrIS because the inclusion of outside knowledge and experience drives innovation in our field. This
includes increasing diversity in our field, expanding international collaborations (including with indige-
nous knowledge holders and local communities) and integrating across an even wider range of scientific
disciplines. These necessary advances can, in part, be accomplished through joint AGU Fall Meeting ses-
sions across typically separated focus groups, special conferences focused on specific problems that remain
unresolved at the boundaries of traditional disciplines, greater international cooperation similar to the joint
U.S.-U.K. efforts underway at Thwaites Glacier funded through coordinated efforts at NERC and NSF, and
a wider range of mechanisms that engage and support new researchers within our community. Achieving
these goals will also advance opportunities to explore the impacts of the current rapid reconfiguration of the
GrIS in a system science context, where many of today's most exciting discoveries are being made. In addi-
tion, because so many of the recent discoveries in ice-ocean exchanges in Greenland have occurred through
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teams composed of diverse scientists, we suggest that awards from scientific societies be augmented to rec-
ognize the enormous team efforts needed to produce quality observations in many of the far-flung reaches
of the poles. AGU could lead such an effort.

8. Outlook
As a community, glaciology has moved quite rapidly in the last few decades spurred by outside interest,
increased quantity, quality, and access to data, and improved methods for interpreting and reproducing
observations with ice flow models. However, we still have not solved the problem of how much sea level
will rise, when, and where it will come from. Much work is focused on these goals, and we encourage
greater coordination from funding agencies, data providers, and within research communities to make rapid
progress on this grand challenge. Observational challenges remain, primarily in the ice-ocean and at the
ice-bed interfaces, but these can be overcome with targeted, well-coordinated, long-term monitoring and
improved technology for observing bed properties and submarine termini. These efforts should be priori-
tized by funding agencies. Model development is also making great leaps in resolution and incorporation of
processes. That community has come a long way from the Fourth Assessment Report from the IPCC (Lemke
et al., 2007), which stated that although observations indicated the importance of dynamical processes in
ice sheets, they were not included in ice sheet models because of the lack of consensus on their ability to
increase ice sheet loss in a warming climate. Further progress is needed to link ice sheet models to the cli-
mate and ocean models that exist outside of our community. This is particularly important for ice-ocean
exchanges because of the range of impacts that are associated with a melting GrIS.

Glossary
ice sheet mass balance The difference between ice sheet mass accumulation (e.g., through snowfall) and

ablation (e.g., through meltwater runoff and calving). Ice sheet mass balance is usually measured on
an annual timescale to capture seasons of accumulation and ablation.

surface mass balance The difference in mass caused only by changes in accumulation and ablation
independent of calving and iceberg discharge (which are associated with ice dynamics). Primary
contributors to surface mass balance are snowfall and meltwater runoff.

ice dynamics Describes the motion within large bodies of ice, such as glaciers and ice sheets, subject to
numerous processes that influence the rheology of ice and the boundary conditions.

calving The process of breaking ice from the end of a marine-terminating glacier or ice shelf, adding broken
ice to the ocean, which are then referred to as icebergs (bergy bits and growlers are smaller than
icebergs).

grounding line The subglacial location at which the glacier terminus region loses contact with ground
beneath it. Sometimes also referred to as a grounding zone. Up-glacier of the grounding line, the
glacier is 'grounded' while down-glacier the glacier is floating.

moraine Unstratified and unsorted rock and sediment piles moved into place via sediment deposition,
glacier erosion and flow. Moraines can exist in front of, next to, and along interior flowlines of a
glacier. Oceanography disciplines use the term sills to describe moraines.

tidewater glacier cycle The idea that tidewater glaciers undergo cycles of dynamic behavior that oscillate
between slow advance and rapid retreat, punctuated by periods of stability. This oscillation occurs
with little sensitivity to climate forcing.

moulins A tubular chute through which water enters the glacier from the surface. Moulins may be formed
by surface meltwater entering a crevasse, with water flow maintaining the channel.

firn As surface snow remains past one year (one melt season) it is compressed, becoming more dense than
snow but less dense than glacier ice. This intermediate material is called firn. As firn densifies the
pore spaces within it becomes less connected and ice crystal size usually increases.

glacier hypsometry Hypsometry describes the distribution of glacier surface elevation with respect to sea
level within an area of interest, with positive values being above sea level and negative values below
sea level.
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Acronyms
SMB Surface Mass Balance
GrIS Greenland Ice Sheet
NAO North Atlantic Oscillation
GBI Greenland Blocking Index

AMO Atlantic Multidecadal Oscillation
AW Atlantic Water
PW Polar Water

PARCA Program for Arctic Regional Climate Assessment
ATM Airborne Topographic Mapper

ICESat Ice, Cloud, and land Elevation Satellite
GRACE Gravity Recovery And Climate Experiment

LIA Little Ice Age
RCP Representative Concentration Pathway

IPCC Intergovernmental Programme on Climate Change
FAIR Findable, Accessible, Interoperable, and Reusable

NSF National Science Foundation
NERC Natural Environment Research Council
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